Deploying Prometheus to Kubernetes
Documenting the steps required to run Prometheus in Kubernetes
What is this about?
This blog post is kind of a learning in public exercise. The goal is to run Prometheus in my local K8s cluster and export Node metrics to it.
I’m using a cluster generated by my local_k8s project. Out of the box, this creates KVM hosted cluster on an Arch machine with an underlying NFS ready for Persisted Volumes; PRs and Issues welcome.
Creating the namespace
The first thing we want to do is create a namespace to run the monitoring resources in. I’m going to call this monitoring
1
kubectl create namespace monitoring
This is the logical grouping for all the resources related to monitoring to be placed, this will be the Pods, ConfigMaps, Services, Secrets etc
Access Control
This first section will configure the access control for a service account to run Prometheus for us.
Service Account
I want to run monitoring as its own dedicated service account, so lets create the manifest file for that.
1
2
3
4
5
6
7
# monitor-sa.yaml
apiVersion: v1
kind: ServiceAccount
metadata:
name: monitor
namespace: monitoring
This will create a service account in the monitoring
namespace called monitor
.
Create:
1
kubectl create -f monitor-sa.yaml
Cluster role
Now that we have a service account, we need to give some permissions to it. Using the Role Based Access Control (RBAC) for Kubernetes, this requires a dedicated role for the access that is required.
Our service account in the monitoring
namespace needs to be able to access resources across the cluster, so this needs to be a ClusterRole
.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# monitor-cluster-role.yaml
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
name: monitor
rules:
- apiGroups: [""]
resources:
- nodes
- services
- endpoints
- pods
verbs: ["get", "list", "watch"]
This ClusterRole
grants holders of the role to be able to get
, list
and watch
a selection of resources (nodes
, services
, endpoints
and pods
).
Create:
1
kubectl create -f monitor-cluster-role.yaml
Binding
There is nothing linking our monitor
service account to the monitor
role at the moment, for this we need a ClusterRoleBinding
.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# monitor-cluster-role-binding.yaml
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
name: monitor
roleRef:
apiGroup: rbac.authorization.k8s.io
kind: ClusterRole
name: monitor
subjects:
- kind: ServiceAccount
name: monitor
namespace: monitoring
This manifest is binding the ClusterRole
monitor
to the service account monitor
from the monitoring
namespace.
Create:
1
kubectl create -f monitor-cluster-role-binding.yaml
Validating Access
At this stage, we want to verify that our new service account can do what we’ve set in the permissions. To do this, we can use the auth can-i
command provided by kubectl
1
kubectl auth can-i watch pods --as system:serviceaccount:monitoring:monitor
This command checks if the service account monitor
in the monitoring
namespace can watch (verb)
pods (resource)
. Thankfully the answer is an emphatic yes
Deploying Prometheus
In this section I will cover the actual deployment of Prometheus
Configuration
Lets store the configuration for Prometheus in a config map. As everything is running in the monitoring
namespace, we can create the config map there.
We need a config to put in the map, this configures the scrapes that Prometheus will perform and some additional global settings.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
#prometheus.yml
global:
scrape_interval: 15s # scrape every 15 seconds
external_labels:
monitor: 'cluster'
scrape_configs:
- job_name: 'prometheus'
scrape_interval: 5s
static_configs:
- targets: ['localhost:9090']
- job_name: 'kubernetes-service-endpoints'
kubernetes_sd_configs:
- role: endpoints
relabel_configs:
- action: labelmap
regex: __meta_kubernetes_service_label_(.+)
- source_labels: [__meta_kubernetes_namespace]
action: replace
target_label: kubernetes_namespace
- source_labels: [__meta_kubernetes_service_name]
action: replace
target_label: kubernetes_name
Create: (pay attention to creating in correct namespace)
1
kubectl -n monitoring create configmap prometheus-config --from-file prometheus.yml
Deployment
I’m going to deploy as a single replica for this example and use a Deployment
rather than just a Pod
so that any restarts are handled nicely.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
# prometheus-deployment.yaml
apiVersion: apps/v1
kind: Deployment
metadata:
name: prometheus
namespace: monitoring
spec:
replicas: 1
selector:
matchLabels:
app: prometheus
template:
metadata:
labels:
app: prometheus
spec:
containers:
- name: prometheus
image: prom/prometheus
volumeMounts:
- name: config-volume
mountPath: /etc/prometheus/prometheus.yml
subPath: prometheus.yml
ports:
- containerPort: 9090
volumes:
- name: config-volume
configMap:
name: prometheus-config
serviceAccountName: monitor
Create:
1
kubectl create -f prometheus-deployment.yaml
Service
Now we have the Prometheus pods running, we need a service to actually get to the UI from our browser.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
# prometheus-service.yaml
kind: Service
apiVersion: v1
metadata:
name: prometheus
namespace: monitoring
spec:
selector:
app: prometheus
ports:
- name: promui
nodePort: 39090
protocol: TCP
port: 9090
targetPort: 9090
type: NodePort
Viewing Prometheus
To view the dashboard lets open up Prometheus with a simple port forward, (an ingress would be better, but this is quicker)
First, find the name of the pod
1
kubectl get pods -n monitoring
Making a note of the Pod name, we can create a port forward
1
kubectl port-forward -n monitoring prometheus-deployment-6559cbc88b-9m9hv 8080:9090
Now if we browse to http://localhost:8080
we can see the Prometheus dashboard.
Node Exporter
There are a few more steps to see the Node Exporter metrics
Adding Exporter Pod
We need a pod per node to get the metrics, so the clear choice is deploying as a DaemonSet
. These pods will run in the monitoring
namespace.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
# node-exporter-daemonset.yaml
apiVersion: apps/v1
kind: DaemonSet
metadata:
labels:
app.kubernetes.io/component: exporter
app.kubernetes.io/name: node-exporter
name: node-exporter
namespace: monitoring
spec:
selector:
matchLabels:
app.kubernetes.io/component: exporter
app.kubernetes.io/name: node-exporter
template:
metadata:
labels:
app.kubernetes.io/component: exporter
app.kubernetes.io/name: node-exporter
spec:
containers:
- args:
- --path.sysfs=/host/sys
- --path.rootfs=/host/root
- --no-collector.wifi
- --no-collector.hwmon
- --collector.filesystem.ignored-mount-points=^/(dev|proc|sys|var/lib/docker/.+|var/lib/kubelet/pods/.+)($|/)
- --collector.netclass.ignored-devices=^(veth.*)$
name: node-exporter
image: prom/node-exporter
ports:
- containerPort: 9100
protocol: TCP
volumeMounts:
- mountPath: /host/sys
mountPropagation: HostToContainer
name: sys
readOnly: true
- mountPath: /host/root
mountPropagation: HostToContainer
name: root
readOnly: true
volumes:
- hostPath:
path: /sys
name: sys
- hostPath:
path: /
name: root
Note that we’re mounting sys
and root
from the host to be able to read from the host.
Create:
1
kubectl create -f node-exporter-daemonset.yaml
Node Exporter
For the metrics to be surfaced we need a service for the node-exporter. Again this will be running in the monitoring
namespace.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
# node-exporter-service.yaml
kind: Service
apiVersion: v1
metadata:
name: node-exporter
namespace: monitoring
annotations:
prometheus.io/scrape: 'true'
prometheus.io/port: '9100'
spec:
selector:
app.kubernetes.io/component: exporter
app.kubernetes.io/name: node-exporter
ports:
- name: node-exporter
protocol: TCP
port: 9100
targetPort: 9100
node-exporter-service.yaml
Adding a scrape job
The last thing left, we need to add a job to prometheus.yml
and update the config map.
1
2
3
4
5
6
7
- job_name: 'node-exporter'
kubernetes_sd_configs:
- role: endpoints
relabel_configs:
- source_labels: [__meta_kubernetes_endpoints_name]
regex: 'node-exporter'
action: keep
This adds a job that will look for node exporter metrics.
Checking the end result
Now we can create the port forward again
1
kubectl port-forward -n monitoring prometheus-deployment-6559cbc88b-94dsf 8080:9090
We can see a number of metrics now in the metrics explorer. Try adding the expression node_memory_MemFree_bytes
and pressing Execute
button.
Over a period of time, this will give you a graph of free memory for the nodes in your cluster.
![Node Exporter Memory Metrics](../image](../image](../images/prometheus_node_exporter.png){:target=”_blank”}